Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cureus ; 14(10): e30269, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2115752

ABSTRACT

An otherwise healthy, 35-year-old man was hospitalized for the management of acute respiratory failure due to coronavirus disease 2019 (COVID-19)-related severe bilateral pneumonia and acute respiratory distress syndrome (ARDS). The patient therapeutic regimen included the widely accepted standard combination of oxygen, anticoagulation therapy; corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs), and antibiotics. A novel combination of colchicine, hymecromone, and bromhexine inhalations was added to the therapeutic regimen as part of our unique COVID-19 management institutional protocol. COVID-19-related severe bilateral pneumonia and acute respiratory distress syndrome (ARDS). The patient therapeutic regimen included the widely accepted standard combination of oxygen, anticoagulation therapy, corticosteroids, NSAIDs, and antibiotics. A novel combination of colchicine, hymecromone, and bromhexine inhalations was added to the therapeutic regimen as part of our unique COVID-19 management institutional protocol. Rapid clinical response on day 2, with a significant improvement of radiographic pulmonary changes on day 5, and improvement of laboratory results on days 5-7 were observed. The administration of inhalatory bromhexine in combination with high-dose colchicine and hymecromone was crucial for the positive outcome of the disease. This treatment regimen resulted in a four to five-fold decrease in the mortality of hospitalized patients.

2.
Mol Biol Rep ; 49(10): 9915-9927, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1942412

ABSTRACT

Bradykinin, a member of the kallikrein-kinin system (KKS), is a potent, short-lived vasoactive peptide that acts as a vasodilator and an inflammatory mediator in a number of signaling mechanisms. Bradykinin induced signaling is mediated through kinin B1 (BDKRB1) and B2 (BDKRB2) transmembrane receptors coupled with different subunits of G proteins (Gαi/Gα0, Gαq and Gß1γ2). The bradykinin-mediated signaling mechanism activates excessive pro-inflammatory cytokines, including IL-6, IL-1ß, IL-8 and IL-2. Upregulation of these cytokines has implications in a wide range of clinical conditions such as inflammation leading to fibrosis, cardiovascular diseases, and most recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In SARS-CoV-2 infection, bradykinin is found to be at raised levels and is reported to trigger a diverse array of symptoms. All of this brings bradykinin to the core point as a molecule of immense therapeutic value. Our understanding of its involvement in various pathways has expanded with time. Therefore, there is a need to look at the overall picture that emerges from the developments made by deciphering the bradykinin mediated signaling mechanisms involved in the pathological conditions. It will help devise strategies for developing better treatment modalities in the implicated diseases. This review summarizes the current state of knowledge on bradykinin mediated signaling in the diverse conditions described above, with a marked emphasis on the therapeutic potential of targeting the bradykinin receptor.


Subject(s)
Bradykinin , COVID-19 , Humans , Interleukin-2 , Interleukin-6 , Interleukin-8 , Receptors, Bradykinin/physiology , SARS-CoV-2 , Vasodilator Agents
3.
OMICS ; 25(7): 408-416, 2021 07.
Article in English | MEDLINE | ID: covidwho-1287972

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is anticipated to transition to an endemic state as vaccines are providing relief in some, but not all, countries. Drug discovery for COVID-19 can offer another tool in the fight against the pandemic. Additionally, COVID-19 impacts multiple organs that call for a systems medicine approach to planetary health and therapeutics innovation. In this context, innovation for drugs that prevent and treat COVID-19 is timely and much needed. As the virus variants emerge under different ecological conditions and contexts in the long haul, a broad array of vaccine and drug options will be necessary. This expert review article argues for a need to expand the COVID-19 interventions, including and beyond vaccines, to stimulate discovery and development of novel medicines against SARS-CoV-2 infection. The Renin-Angiotensin-Aldosterone System (RAAS) is known to play a major role in SARS-CoV-2 infection. Neprilysin (NEP) and angiotensin-converting enzyme (ACE) have emerged as the pharmaceutical targets of interest in the search for therapeutic interventions against COVID-19. While the NEP/ACE inhibitors offer promise for repurposing against COVID-19, they may display a multitude of effects in different organ systems, some beneficial, and others adverse, in modulating the inflammation responses in the course of COVID-19. This expert review offers an analysis and discussion to deepen our present understanding of the pathophysiological function of neprilysin in multiple organs, and the possible effects of NEP inhibitor-induced inflammatory responses in COVID-19-infected patients.


Subject(s)
Neprilysin/chemistry , Bradykinin/genetics , Bradykinin/metabolism , Renin-Angiotensin System/genetics , Renin-Angiotensin System/physiology , SARS-CoV-2
4.
Front Pharmacol ; 11: 615287, 2020.
Article in English | MEDLINE | ID: covidwho-1133947

ABSTRACT

During the outbreak of the novel coronavirus disease (COVID-19), the Chinese government took a series of public health measures to tackle the outbreak and recommended six traditional Chinese medicine (TCM) evolved formulas, collectively referred to as "3-drugs-3-formulas", for the treatment. In this prospective article, we will discuss how these six formulas evolved from TCM and what their underlying mechanisms of actions may be by evaluating the historical usage of the component formulas, the potential targeted pathways for the individual herbs used by STAR (signal transduction activity response) database from our laboratory, and the pathogenesis of COVID-19. Five of the six recommended formulas are administered orally, while the sixth is taken as an injection. Five classic categories of herbs in the six formulas including "Qing-Re", "Qu-Shi", "Huo-Xue", "Bu-Yi" and "Xing-Qi" herbs are used based on different stages of disease. All five oral formulas build upon the core formula Maxingshigan Decoction (MD) which has anti-inflammatory and perhaps antiviral actions. While MD can have some desired effects, it may not be sufficient to treat COVID-19 on its own; consequently, complementary classic formulas and/or herbs have been added to potentiate each recommended formula's anti-inflammatory, and perhaps anti-renin-angiotensin system (RAS)-mediated bradykinin storm (RBS) and antiviral effects to address the unique medical needs for different stages of COVID-19. The key actions of these formulas are likely to control systemic inflammation and/or RBS. The usage of Chinese medicine in the six formulas is consistent with the pathogenesis of COVID-19. Thus, an integrative systems biology approach-combining botanical treatments of conventional antiviral, anti-inflammatory or anti-RBS drugs to treat COVID-19 and its complications - should be explored.

5.
Stem Cell Rev Rep ; 17(1): 241-252, 2021 02.
Article in English | MEDLINE | ID: covidwho-1082595

ABSTRACT

The global SARS-CoV-2 pandemic starting in 2019 has already reached more than 2.3 million deaths. Despite the scientific community's efforts to investigate the COVID-19 disease, a drug for effectively treating or curing patients yet needs to be discovered. Hematopoietic stem cells (HSC) differentiating into immune cells for defense express COVID-19 entry receptors, and COVID-19 infection hinders their differentiation. The importance of purinergic signaling in HSC differentiation and innate immunity has been recognized. The metabotropic P2Y14 receptor subtype, activated by UDP-glucose, controls HSC differentiation and mobilization. Thereon, the exacerbated activation of blood immune cells amplifies the inflammatory state observed in COVID-19 patients, specially through the continuous release of reactive oxygen species and extracellular neutrophil traps (NETs). Further, the P2Y14 subtype, robustly inhibits the infiltration of neutrophils into various epithelial tissues, including lungs and kidneys. Here we discuss findings suggesting that antagonism of the P2Y14 receptor could prevent the progression of COVID-19-induced systemic inflammation, which often leads to severe illness and death cases. Considering the modulation of neutrophil recruitment of extreme relevance for respiratory distress and lung failure prevention, we propose that P2Y14 receptor inhibition by its selective antagonist PPTN could limit neutrophil recruitment and NETosis, hence limiting excessive formation of oxygen reactive species and proteolytic activation of the kallikrein-kinin system and subsequent bradykinin storm in the alveolar septa of COVID-19 patients.


Subject(s)
COVID-19/therapy , Hematopoietic Stem Cell Transplantation , Inflammation/therapy , Receptors, Purinergic P2/genetics , Respiratory Distress Syndrome/therapy , Bradykinin/metabolism , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Chemotaxis/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/virology , Humans , Inflammation/pathology , Inflammation/virology , Lung/pathology , Lung/virology , Neutrophils/metabolism , Neutrophils/pathology , Neutrophils/virology , Pandemics , Receptors, Purinergic P2/drug effects , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL